Bi-invariant metrics on groups

Jarek Kędra

University of Aberdeen

Selected Topics in Mathematics - 4 OCTOBER 2024

In collaboration with: Brandenbursky, Gal, Jaspars, Karlhofer, Libman, Marcinkowski, Martin, Shelukhin, Trost.

Overview

- Definition. •
- Riemannian Geometry.
- Hamiltonian dynamics.
- ► Group Theory. •
- Biology. -
- General outlook.

Definition

Let G be a group. A metric d on G is called **<u>bi-invariant</u>** if both the multiplication from the right and from the left are isometries:

$$d(xg, yg) = d(x, y) = d(gx, gy)$$

for all $x, y, g \in G$.

Definition

Let G be a group. A metric d on G is called *bi-invariant* if both the multiplication from the right and from the left are isometries:

$$d(xg,yg) = d(x,y) = d(gx,gy)$$

for all $x, y, g \in G$.

$$\implies \underline{d\left(g^{-1}xg,1\right)} = d(xg,g) = d(x,1)$$

Definition

Let G be a group. A metric d on G is called *bi-invariant* if both the multiplication from the right and from the left are isometries:

$$d(xg,yg) = d(x,y) = d(gx,gy)$$

for all $x, y, g \in G$.

$$\implies d\left(g^{-1}xg,1\right) = d(xg,g) = d(x,1)$$

 \implies Conjugacy classes live on spheres centered at 1

Definition

Let G be a group. A metric d on G is called *bi-invariant* if both the multiplication from the right and from the left are isometries:

$$d(xg,yg) = d(x,y) = d(gx,gy)$$

for all $x, y, g \in G$. $\implies d(\underline{g^{-1}xg}, 1) = d(xg, g) = d(\underline{x}, 1)$ $\implies \text{Conjugacy classes live on spheres centered at 1.}$ $\models \underbrace{\|g\|} = d(\underline{g}, \underline{1}) - \text{a conjugation-invariant norm.}$ $\models d(\underline{g}, h) = \|gh^{-1}\| = \|g^{-1}h\|.$

Riemannian geometry

- G a Lie group with Lie algebra \mathfrak{g} .
- Choose an inner product on $\mathfrak{g} = T_1 G$.
- Propagate over TG with left multiplication:

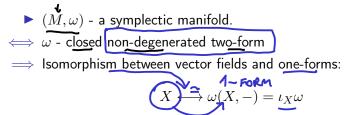
$$\langle X,Y\rangle_g = \langle dL_{g^{-1}}X, dL_{g^{-1}}X\rangle_1.$$

$$\Longrightarrow \text{Left-invariant} \text{metric on } G.$$

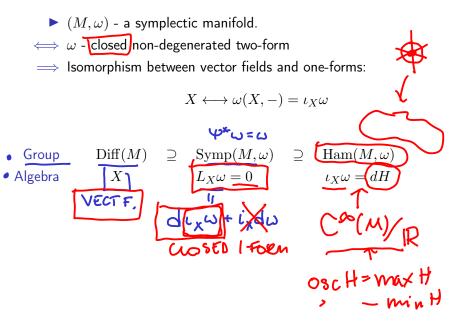
Riemannian geometry

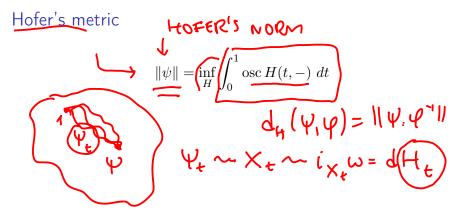
 $G = SL(2, \mathbf{R})$ G = SO(3)Ad: $SO(3) \rightarrow Aut(so(3))$ Ad: $SL(2, \mathbf{R}) \rightarrow Aut(sl(2, \mathbf{R}))$ SO(3) SIMPLE NON-COMPACT COMPACT

Hamiltonian dynamics



Hamiltonian dynamics





All known examples have infinite Hofer diameter.

Autonomous metric

•
$$\psi \in \operatorname{Ham}(M, \omega)$$
.
• $\psi = \psi_1$, where $\{\psi_t\} \in \operatorname{Ham}(M, \omega)$.
• $\psi_t \leftrightarrow X_t \leftrightarrow H_t$.
• ψ is autonomous if $H_t = H$ is time independent.
 $\|\psi\| = \min\{n \in \mathbb{N} \mid \psi = \alpha_1 \cdots \alpha_n, \alpha_i \text{ is autonomous}\}$
Aut
• $THM (BRANDEABURSKY-)$
Ham^c ($\mathbb{R}^{2n}, \omega_o$)
Autonomous DiAMETER
• $EITMER 2 \text{ or } 3$
OPEN : WHICH ONE?

Group theory

G a group generated by $S \subseteq G$; $S = S^{-1}$. Word norm and metric: $\blacksquare \|g\|_S = \min\{n \in \mathbb{N} \mid g = s_1 \cdots s_n, s_i \in S\} \leftarrow$ word Norm $d_S(g,h) = \|gh^{-1}\|_S \leftarrow$ right-invariant If $g^{-1}Sg = S$ for every $g \in G$ then the norm is conjugation-invariant and the metric bi-invariant.

Coxeter groups. •

- \blacktriangleright S the set of <u>all r</u>eflections.
- d_S the reflection metric is **bi-invariant**.

Coxeter groups.

- \blacktriangleright S the set of all reflections.
- d_S the reflection metric is **bi-invariant**.
- Finitely generated groups.
 - ► S finite generating set.

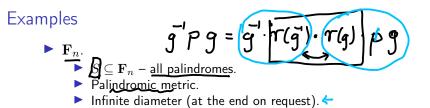
- <u>d</u>_S right-invariant unless G is (virtually) abelian.
- Up to Lipschitz equivalence, d_S does not depend on S

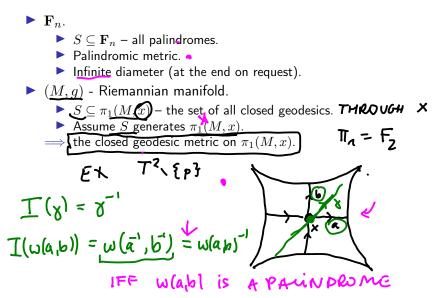
Coxeter groups. SCL CALEGARI S – the set of all reflections. d_S – the reflection metric is **bi-invariant**. Finitely generated groups. S - finite generating set. \blacktriangleright d_S - **right-invariant** unless G is (virtually) abelian. Up to Lipschitz equivalence, d_S does not depend on S. • Commutator subgroup $[G,G] \subseteq G$. ▶ S. the set of all commutators $[g,h] \in [G,G]$, $g,h \in \mathcal{G}$ <u>d</u>_S – commutator metric is **bi-invariant**. Good topological interpretation.

Coxeter groups.

- S the set of all reflections.
- \blacktriangleright d_S the reflection metric is **bi-invariant**.
- Finitely generated groups.
 - S finite generating set.
 - \blacktriangleright d_S **right-invariant** unless G is (virtually) abelian.
 - Up to Lipschitz equivalence, d_S does not depend on S.
- Commutator subgroup $[G, G] \subseteq G$.
 - ▶ S the set of all commutators $[g, h] \in [G, G], g, h \in G$.
 - d_S commutator metric is **bi-invariant**.
 - Good topological interpretation.
- ▶ $\mathbf{F}_2 = \langle a, b \rangle$ free group on two generators.
 - S all conjugates of a, b and their inverses. $d_S bi-invariant$.

 - Good algorithms for computations (we have a software [2013]). || q || c





RNA folding

► RNA: sequence of letters A,C,G,U. ► Pairings: A-U, C-G. -► Folding: A-A' C-C'

RNA folding

- ► RNA: sequence of letters A,C,G,U.
- ▶ Pairings: A-U, C-G.
- ► Folding:
- It is the conjugation-invariant word norm on F₂!

RNA folding

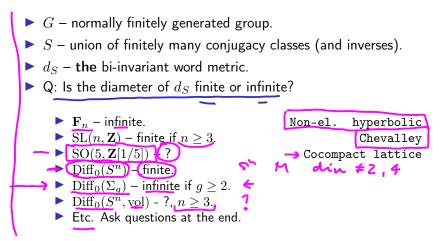
- ► RNA: sequence of letters A,C,G,U.
- ► Pairings: A-U, C-G.
- ► Folding:
- It is the conjugation-invariant word norm on F₂!

٠

Biologists found our algorithm in 1980!

 $S \in G \left(\bigcup_{q \in G} j' \leq q \right) = G$ Bi-invariant word metrics ► <u>G</u> – normally finitely generated group. ▶ S – union of finitely many conjugacy classes (and inverses). • d_S – (the) bi-invariant word metric. (G. J) G-SIMPLE бх S= Conj(q¹)

Bi-invariant word metrics



The free group

•
$$G = \mathbf{F}_2 = \langle a, b \rangle$$

• $g = b^{-1}a^{-1}b^{-1}aba^{-1}b^{-1}a^{-1}baba$ •

he free group

$$G = \mathbf{F}_2 = \langle a, b \rangle$$

$$g = b^{-1}a^{-1}b^{-1}aba^{-1}b^{-1}a^{-1}baba$$

$$\|g^2\| = \|g\| = 4$$
Biological meaning?

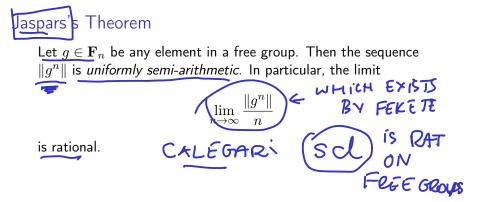
The free group

$$\begin{array}{l} \bullet & G = \mathbf{F}_2 = \langle a, b \rangle \\ \bullet & g = b^{-1}a^{-1}b^{-1}aba^{-1}b^{-1}aba^{-1}b^{-1}a^{-1}baba \\ \bullet & \|g^2\| = \|g\| = 4 \\ \bullet & \text{Biological meaning?} \\ \bullet & \|g^n\| = 4, 4, 6, 8, 10, 10, 12, 14, 16, 16, 18, 20, 22, 22, 24, 26, \cdots \\ \bullet & \text{Harrow} \quad \text{this is write number} \end{array}$$

Hmmm...this is quite regular...

The free group

$$\begin{array}{l} G = \mathbf{F}_2 = \langle a, b \rangle \\ & g = b^{-1}a^{-1}b^{-1}aba^{-1}b^{-1}aba^{-1}b^{-1}a^{-1}baba \\ & \|g^2\| = \|g\| = 4 \\ & \text{Biological meaning?} \\ & \|g^n\| = 4, 4, 6, 8, 10, 10, 12, 14, 16, 16, 18, 20, 22, 22, 24, 26, \cdots \\ & \text{Hmmm...this is quite regular...} \\ & \underline{\|[a, b]^n\|} = 2, 4, 4, 6, 6, 8, 8, \cdots = \begin{cases} n+1 & \text{if } n \text{ is odd } \\ n+2 & \text{if } n \text{ is even} \end{cases} \\ & \text{In fact...} \end{array}$$



THANK YOU! Any questions?

